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The Magnetism of (5MAP)2CuBr4 [5MAP = 5-Methyl-2-aminopyridinium]:
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In order to determine if its magnetic topology is actually two- or three-dimensional (2D or 3D), the mechanism of the
magnetic interaction in (5MAP)2CuBr4, a previously thought quasi-2D antiferromagnet, is re-examined using the first-
principles bottom-up methodology. Once the magnitude and sign of all unique magnetic interactions present in the
room-temperature (5MAP)2CuBr4 crystal are evaluated, it is found that, even at room temperature, the magnetic
topology of the crystal corresponds to a 3D antiferromagnet. Such 3D nature cannot be determined by examination of
the magnetic susceptibility curve, χ(T), because it is found that the χ(T) curve computed using this 3D magnetic
topology is very similar to that obtained using a 2D model where all interplane interactions have been deleted.
However, its 3D magnetic dimensionality can be confirmed by examination of the shape of the magnetization curve,
M(H); the computed curve is similar to the experimental one for the 3D case.

Introduction

Two-dimensional (2D) antiferromagnets are remarkable
for their sensitivity to exchange anisotropy, remaining disor-
dered at all temperatures in the case of isotropic (Heisenberg)
exchange, but readily ordering at low temperatures for easy-
plane or easy-axis anisotropies.1 Therefore, within the frame-
work of phase transitions, there has recently been a strong
interest in understanding the magnetic properties of 2D S =
1/2 Heisenberg antiferromagnets (AFM). This has become
especially important for the examination of a number of
theoretical predictions, particularly those involving field-
dependent properties.2 However, this requires the preparation
of 2D AFM systems presenting reasonably small intralayer
exchange interactions, as most field-dependent studies are
impossible on the La2CuO4 based family of superconductors
where the strong intraplanarAFMinteractions (>|550| cm-1)
make it impossible to study the magnetism of the materials in
an appreciable fraction of their saturation field.3

Many 2D AFM systems showing small (inter/intra)-layer
exchange ratios have been prepared and characterized, both

through structural isolation of layers within a crystal lattice4

and via the use of thin films.5 Even though thesematerials are
predominantly 2D layered systems, they present weak inter-
plane interactions, and a 2D-to-3D magnetic crossover is
expected to occur at sufficiently low temperatures. Alterna-
tively, 3D long-range order could arise within a layer due to a
high anisotropy.6Despite such drawbacks, 2D systems show-
ing weak intraplane exchange interactions may still serve as
good approximations to 2D systems over a wide temperature
range, provided that the ratio between the (inter/intra)-layer
magnetic interactions is sufficiently small.7
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Over the past two decades, the properties of potential
quasi-2D dimensional materials have been investigated in a
variety of metal complexes, both experimentally8 and
theoretically.9 The degree of interplanar isolation in these
complexes has been measured by looking at the TN/2|Jintra|
ratio, where TN is the 3D-ordering temperature and Jintra is
the magnetic exchange within the layers. It was found that
even the best isolated 2D systems reported to date have
figures of merit of TN/2|Jintra| g 0.17.10,11 Quantum Monte
Carlo simulations have shown the effect of layer isolation on
the properties of such magnetic systems as a function of the
Jinter/Jintra ratio (Jinter and Jintra being the inter- and intralayer
exchange interactions, respectively, with Jinter < Jintra).

12 At
large values of Jinter/Jintra, a peak is observed in the specific
heat, characteristic of the 3D-ordering transition. However,
as the Jinter/Jintra ratio decreases, two distinct maxima are
observed, one attributed to the establishment of short-range
2Dorder, anda second to 3D-ordering.Themagnitude of the
heat capacity anomaly becomes vanishingly small for values
of Jinter/Jintra less than 0.2 making it difficult to identify the
transition from 2D to 3D ordering in these systems.
The (5MAP)2CuBr4 compound (5MAP = 2-amino-5-

methyl pyridinium, Figure 1a) is one of the recently reported
compounds believed to present quasi-2D AFM properties
and weak intraplanar exchange interactions.13 (5MAP)2CuBr4
belongs to a family of Cu(II) salts with the general chemical
formulaA2CuX4,whereA=5MAP,5CAP,or5BAP(5CAP=
2-amino-5-chloropyridinium; 5BAP = 2-amino-5-bromopyri-
dinium) andX=Br or Cl. By fitting themagnetic susceptibility
curves to a pure 2D model (a 2D-QHAF quantum Heisenberg
antiferromagnet), intraplanemagnetic interactions of-3.0,-2.4,
and -2.3 cm-1 were obtained for (5CAP)2CuBr4, (5BAP)2-
CuBr4, and (5MAP)2CuBr4, respectively.

13b,c,14 The saturation

fields for these compounds were estimated to be 24.1, 19.6, and
18.8T, respectively, thusmaking it possible to attain saturation in
studies of their magnetization curves,M(H).
The magnetic susceptibility curves, χ(T), of (5MAP)2CuBr4

and (5CAP)2CuBr4 are well fitted using 2D models from room
temperature to a temperature slightly below the maximum in
χ(T) (∼5-8 K), whereupon their behavior deviates
significantly.13b,c The deviation was thought to be due to the
onset of interactions between the planes, that is, to a 2D-3D
magnetic phase transition.13c The presence of long-range 3D
order was observed for (5CAP)2CuBr4 via specific heat
measurements.14 The absence of a suitable model capable of
describing such 2D-3D crossover left unanswered the question
of just how strong the interlayer interactions were, although
TN/2|Jintra| ratios of ∼0.6 for five A2CuX4 isomorphous com-
plexes (when A= 5CAP or 5MAP, X=Br or Cl; when A=
5BAP, X=Br)13 indicated that the interactions between layers
must be significant in spite of the apparent correlation to the 2D-
model above TN. All these deficiencies prompted us to re-
evaluate the mechanism of the magnetic interaction in
(5MAP)2CuBr4 using a first-principles bottom-up procedure.15

The first-principles bottom-up procedure calculates the value of
all unique magnetic exchange pathways, J(di), between the
radicals in any molecule-based magnetic crystal from the only
knowledge of the crystal structure, that is, without making any
biased assumption on the strength or nature of the radi-
cal-radical magnetic interactions. Then, using these calculated
magnetic interactions, the macroscopic magnetic properties
(such as the magnetic susceptibility, magnetization, and heat
capacity) are computed and their value and variation connected
with the J(di) pair interactions. The reliability of the first-
principles bottom-up procedure has been demonstrated in
both organic16 and metal-based systems.17 The computed

Figure 1. (a) Molecular geometry of 5MAPþ and CuBr4
2- ions. (b) Spin density of the CuBr4

2- ion (doublet ground state, plotted for the 0.002 au.
isodensity surface; it is positive everywhere).
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macroscopic property curves can also be compared with other
curves obtained using hypothetical topologies, obtained by
excluding some specific magnetic interactions from the calcula-
tion. This allows verification of the significance of these interac-
tions (for instance, one can exclude all interlayer interactions in
order to compare the 3Dmagnetic properties with those from a
hypothetical 2D topology).

Computational Details

In order to perform a complete theoretical study of the
magnetic properties of anymolecule-based crystal, a working
strategy, called the first-principles bottom-up procedure,15

has been developed in our group. This procedure consists of
the successive application of the following four steps:

Step 1. Analysis of the crystal packing in order to select all
unique first- and second-neighbor radical-pairs, di (i.e., those
not related by symmetry operations). The search for these
radical-pairs is done by examining all pairs separated by less
than a set cutoff distance, since it is known that the magni-
tude of the magnetic interaction decreases exponentially as
the distance increases.
Step 2. Computation of the microscopic magnetic interac-
tions, J(di), for all unique radical-pairs selected in the pre-
vious step. The (5MAP)2CuBr4 crystal consists of CuBr4

2-

doublet radicals composed of four diamagnetic Br- ligands
coordinated to one Cu(II), having one unpaired electron.
The diamagnetic (5MAP)þ cations play a structural and
stabilizing role. Any radical-radical pair can either have a
singlet or triplet electronic state, and the value of J(di) for
each pair is then obtained from the energy difference between
the open-shell singlet (EBS

S) and triplet (ET) states. Both
energies are computed using the B3LYP functional,18 the
Ahlrichs-pVDZ19 basis set for Cu, and a 6-31þG(d)20 basis
set for the remaining atoms (as implemented in theGaussian-
0321 code). For a proper description of the open-shell singlet,
the broken symmetry approximation was used.22Within this
approximation and using the Ĥ = -

P
i,j2JijŜiŜj expression

of the Heisenberg Hamiltonian, the value of J(di) is obtained
as 2J(di) = 2(EBS

S - ET)23 (this expression for J(di) strictly
derives from the original broken-symmetry equations22

when the SOMOorbitals of the two radicals do not overlap).
The use of this expression has been somewhat controversial
for magnetic superexchange interactions, although it pro-
vides excellent results when compared to the experimental
values in most cases.24

Step 3. Generation of the magnetic topology, defined by the
network of non-negligible radical-radical magnetic connec-
tions within the crystal (any radical will be magnetically
connected to its neighbor if their J(di) is larger than |0.05|
cm-1, a threshold value given by the precision of the
calculation).15 Given a magnetic topology, the minimal
magnetic model is defined as the smallest subset of radicals
that includes all non-negligible J(di) interactions in a ratio as
close as possible to that found in the infinite crystal. The
repetition of this magnetic model along the crystallographic
(a,b,c) directions should regenerate the magnetic topology of
the full crystal (a useful test to check the validity of the
selected magnetic model spaces).
Step 4. The radical centers constituting the magnetic models
define a spin space that is used to compute the matrix
representation of the correspondingHeisenbergHamiltonian.23

The energy and eigenvalues for all possible spin states of this
Heisenberg Hamiltonianmatrix can be computed using partial
or full diagonalization methods. The size of the corresponding
basis set increases with the number of doublet radical centersN
of the magnetic model as N!/[(N/2)!(N/2)!]. Current computer
limitations allow us up to 16 doublet centers for a full diag-
onalization and 30 doublet centers for a partial diagonalization
(Lanczos method with partial reorthogonalization is used).25

From the set of eigenvalues, one can then compute the macro-
scopicmagnetic properties (heat capacityCp, magnetic suscept-
ibility χ, andmagnetizationM) using their statisticalmechanics
expression. These computed values can be then be compared
with those obtained experimentally, or those computed
using hypothetical magnetic topologies where one or more
of the J(di) interactions have user-assigned values (e.g.,
J(interplane) = 0).

Results and Discussion

1. Analysis of the (5MAP)2CuBr4 Crystal. As already
indicated, the crystal structure of the (5MAP)2CuBr4
salt13a is made out of doublet ground state Cu(II)Br4

2-

radical-anions and closed-shell (diamagnetic) 5MAPþ

cations. They pack forming very dark brown-red crystals,
in the monoclinic C2/c crystallographic space group (at
room temperature, a = 13.715 Å, b = 8.7162 Å, c =
16.013 Å, β=93.79�). The (5MAP)2CuBr4 crystal can be
visualized as the result of the stacking of identical
ac-planes along the b-axis. Adjacent ac-planes are shifted
in order to minimize like-charge contacts (Figure 2a). In
these ac-planes, the Cu(II)Br4

2- radical-anions form
rows along the c-axis, which are separated from each
other by rows of 5MAPþ dimers that are placed in an
up-down arrangement (Figure 2b). This allows the for-
mation of short-distance Br 3 3 3Br contacts (at 4.545 Å
within the ab-planes and also at 4.973 Å between adjacent
planes, see Figure 2c,d). Each Cu(II)Br4

2- radical-anion
makes four in-plane interactions within the ab-plane, and
four interplane interactions (Figure 2e). The short-dis-
tance in-plane Br 3 3 3Br contacts create a 2D regular
square-shaped network of interactions over the crystal
(dBr 3 3 3Br = 4.545 Å) with 5MAPþ cations inserted bet-
ween any two Cu(II)Br4

2- anions (Figure 2c). Each
ab-plane is connected to its upper and lower adjacent plane
by two identical 4.973 Å Br 3 3 3Br contacts. The network
that these short-distance Br 3 3 3Br interactions build within
the (5MAP)2CuBr4 crystal shows a 3D topology.
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From the analysis of the packing of the room-tempera-
ture (5MAP)2CuBr4 crystal, it is possible to determine its
unique radical-pairs. This was done by selecting those
Cu(II)Br4

2- radical-anions whose Cu(II) 3 3 3Cu(II) dis-
tance was shorter than 12.0 Å. Seven unique radical-pairs
were found. The crystallographic arrangement of these
unique radical-pairs and a detailed view of their geometry
are depicted, respectively, in Figures 3 and S1 (Sup-
porting Information).
The d1 radical-pair connects two Cu(II)Br4

2- radicals
of nearby ab-planes along the c-axis, and d2 and d3
connect radicals-anions within the ab-plane (d3 along
the b-axis). Radical-pairs d4, d5, d6, and d7 connect
nonvertical radical-anions of adjacent ab-planes, there-
fore, being relevant in establishing a 3Dmagnetic behavior

by connecting the ab-planes. Table 1 shows the shortest
Cu 3 3 3Cu and Br 3 3 3Br distances between the radicals of
these seven pairs. Notice that while d2 presents the shortest
Br 3 3 3Br distance, d1 presents the shortest Cu 3 3 3Cu dis-
tance. Looking only at the values of the shortest Cu 3 3 3Cu
distance, one would expect d1, d2, and d3 to be the
dominant magnetic interactions, but these three pairs
cannot possibly define 2D magnetic layers as they would
define a 3D magnetic topology. Therefore, the magnetic
pathways in (5MAP)2CuBr4 will be driven by the relative
orientation of Cu(II)Br4

2- radicals, which is the key factor
determining the value of the magnetic interaction.17g

2. Calculation of the Magnetic Interaction for All Un-
ique Radical-Pairs. The value of the magnetic exchange,
J(di), for each unique radical-pair determined before was

Figure 2. (a) View of the (5MAP)2CuBr4 crystal along the c-axis; (b) perpendicular view of one of the ac-planes. (c) View of the network formed by the
4.545 Å Br 3 3 3Br contacts within the ab-plane. (d) Network built within the crystal by the 4.545 and 4.973 Å short-distance Br 3 3 3Br contacts. (e) Br 3 3 3Br
short contacts made by any one Cu(II)Br4

2- anion within the crystal. All distances are in Å.
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then computed. This evaluation can be done on the two
isolated CuBr4

2- radicals that constitute the radical-pair,
at their crystal geometry (i.e., using the anion2 model in
Table 1) or by also adding the nearest four 5MAPþ

cations in each pair (the anion2-cation4 model in
Table 1); the later model takes into account the main
effects generated by the Madelung field.26 Previous stud-
ies have shown that the presence of cations in the
anion2-cation4 model localizes the anion-radical wave
functionmore in space,17 which results in a decrease in the
overlap between the two radical wave functions. This
leads to smaller J(di) values for the non-negligible mag-
netic interactions (those where J0(di) > |0.05| cm-1)15

computed using the anion2-cation4 model. One expects
the anion2-cation4model to be closer to the experimental
results, because this model reproduces better the experi-
mental environment of the radicals within the crystal.
All non-negligible magnetic interactions in both mod-

els are antiferromagnetic, and their strength shows no
correlation with the shortest Cu 3 3 3Cu distance. Instead,
it appears to show some correlation with the shortest
Br 3 3 3Br distance between the two radicals, with the J(di)
value also affected by the relative orientation of the
radicals. This finding is consistent with the fact that the
magnetic exchange in the (5MAP)2CuBr4 crystal occurs
via through-space Cu-Br 3 3 3Br-Cu pathways. This
through-space interaction, caused by the overlap of the
two CuBr4

2- radical wave functions, is made possible

because the CuBr4
2- molecular orbitals are partially

delocalized over the Br atoms. This also induces the
delocalization of the unpaired electron density, located
formally on the Cu(II) ion, over the Br atoms (see
Figure 1b). It is also remarkable that non-negligible
magnetic interactions exist in these through-space
CuBr 3 3 3BrCu interactions when the Br 3 3 3Br distance
is as great as 5.0 Å.

3. Determination of the Magnetic Topology. The mag-
netic topology of (5MAP)2CuBr4 is the network of mag-
netic interactions generated by the four non-negligible
J(d1), J(d2), J(d5), and J(d6) interactions. The strongest
magnetic interactions, J(d1) = -1.47 cm-1 and J(d2) =
-3.35 cm-1, generate a 3D network (see Figure 4a): J(d2)
forms regular square layers within the ab-plane, and J(d1)
connects any two directly aligned radicals of these layers
along the c-axis. The two remaining magnetic interac-
tions, J(d5) and J(d6), serve only to create weaker con-
nections between adjacent ab-planes (see Figure 4a).

4. Computation of the Macroscopic Magnetic Proper-
ties. A proper magnetic model, whose expansion along
the three crystallographic axes is capable of generating
the magnetic topology of the full (5MAP)2CuBr4 crystal
in an even way, is the 3D8s model (3D8s stands for its
three-dimensional nature, and for the eight radical cen-
ters) (see Figure 4b). Calculations were also done with
larger models, where the number of radical centers was
enlarged from8 to16 (seeSupporting InformationFigureS2
for a variety of magnetic model spaces and S3 for
the corresponding computed χ(T) data), in order to check
the convergence of the computed χ(T) curves toward the
experimental curve. All computed χ(T) curves do con-
verge toward the 3D16smodel data (see Figure 4c), which
is taken as our minimal magnetic model. Therefore, from
now on for discussion purposes we will refer to results
computed with the 3D16s minimal model.
Using as a basis set the space of spin functions of the 16

doublet centers comprising the 3D16s model, the matrix
representation of the Heisenberg Hamiltonian was built
and diagonalized. The energies that result from that
diagonalization were then used in the appropriate statis-
tical mechanics expression15 to compute the magnetic
susceptibility curve, χ(T), of the (5MAP)2CuBr4 crystal
(Figure 5). A comparison of the 3D16s computed χ(T)
curve and the available experimental curve (either raw
data, or experimental data fitted using a 2D QHAF
model13b in Figure 5) indicates that the computed curve
reproduces the main features of the experimental and
fitted curves. The small deviation in the region of the
maxima of χ(T) can be associated with the use of a room
temperature crystal structure in the calculations, which is
the only available crystal structure (temperature effects
on the computedmagnetic susceptibility curves have been
extensively evaluated in other systems,17d,f concluding
that thermal expansion induces nonisotropic changes in
the J(di) values; the agreement between experimental and
computed curves is always improved if the temperature at
which the crystal structure is determined is closer to the
temperature at which the experimental curve shows its
maximum16,17).

5. Magnetic Properties of a Hypothetical Purely 2D
(5MAP)2CuBr4 Crystal. The similarity described above
for (5MAP)2CuBr4 among the 2D-fitted χ(T) curve, the

Figure 3. Crystallographic arrangement of the seven unique selected
radical pairs in (5MAP)2CuBr4. Color lines are depicted to represent the
possible magnetic connectivity (notice that these lines do not represent
real bonds).

Table 1. Values of the Shortest Cu 3 3 3Cu and Br...Br Distances for the d1-d7
Radical-Pairs of the Room Temperature (5MAP)2CuBr4 Crystal

a

pair,
di Cu 3 3 3Cu/Å Br 3 3 3Br/Å

J(di)/cm-1

anion2 model

J(di)/cm-1

anion2-cation4
model

d1 8.007 4.973 -2.85 -1.47
d2 8.125 4.545 -6.64 -3.35
d3 8.716 7.640 <|0.01|
d4 11.073 8.328 <|0.01|
d5 11.096 6.486 -0.15 -0.08
d6 11.710 6.978 -0.12 -0.07
d7 11.732 9.047 <|0.01|

aThe value of the J(di) parameter for each pair is also given.

(26) Kittel, C. Introduction to Solid State Physics, 7th ed.; John Wiley &
Sons, Inc.: New York, 1996.



8022 Inorganic Chemistry, Vol. 49, No. 17, 2010 Jornet-Somoza et al.

raw data χ(T) curve (which, as was demonstrated above,
corresponds to a 3D magnetic topology), and the χ(T)
curve computed using the three-dimensional 3D16s mod-
el, prompted us to further investigate the magnetic prop-
erties of a hypothetical purely 2D magnetic topology
obtained from the 3D16s model by setting the interplane
J(di) interactions equal to zero and recalculating the χ(T)
curve. When the three non-negligible interplane interac-
tions connecting adjacent ab-planes, J(d1), J(d5), and
J(d6), are deleted in the 3D16s minimal magnetic model,
one obtains the 2D2x8s model, which is a two-dimen-
sional model made out of two isolated planes, each
constituted by eight doublet centers (see Figure 4c). The
χ(T) curves computed using the 2D2x8s and 3D16s
models have a similar shape (Figure 6), the main differ-
ence being the value of χ in theTmax region, which is larger
using the 2D2x8s model. The χ(T) experimental raw data
curve sits closely in between the 2D2x8s and 3D16s
curves. This fact, added to the similarity between the
raw-data and 2D-fitted curves, allows the conclusion that

in (5MAP)2CuBr4 one cannot discriminate between 2D
or 3D magnetic topologies solely by examining the shape
of the magnetic susceptibility curve.
The origin of the similar shape of χ(T) using 3D16s and

2D2x8s models was further investigated around χ(Tmax).
As shown in eq 1, the values of χ(T) are determined,
besides some constants, by theEn-E0 differences and the
spin S multiplicity of states n and 0.

χ ¼ Ng2μ2B
3kBT

μ0

P
n

SnðSn þ 1Þð2Sn þ 1Þ exp½- ðEn -E0Þ=kBT �
P
n

ð2Sn þ 1Þ exp½- ðEn -E0Þ=kBT �

2
64

3
75 ð1Þ

As shown in Figure 7a, the full energy spectrumΔE of the
3D16s and 2D2x8s magnetic models is similar. The
analysis of the Boltzmann population at 7.5 K, which is
the Tmax of the χ curves, shows that only those states with
ΔE∼<30 cm-1 present a non-negligible population (see

Figure 4. (a) Magnetic topology of the (5MAP)2CuBr4 crystal at room temperature (the values of the J(di) interactions are given in cm-1).
(b) Representation of the 3D8s magnetic model. (c) Representation of the 3D16s magnetic model. In these drawings, each CuBr4

2- radical is represented
by its centroid (no 5MAPþ cations are shown, for simplicity).

Figure 5. Comparison between experimental χ(T) curve and computed
χ(T) curve using the three-dimensional 3D16s magnetic model (raw data:
filled black circles; fitted values to a 2D QHAF model: dashed line;
computed curveusing the 3D16smodel: red rhombus). The inset shows an
expanded view of the maxima region.

Figure 6. Comparison between experimentally fitted χ(T) curve and
computed χ(T) curve using the three-dimensional 3D16s and two-dimen-
sional 2D2x8s magnetic models (experimentally fitted values to a 2D
QHAF model: dashed line; computed curve using the 3D16s model: red
rhombus). The inset shows an expanded view of the maxima region.
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Figure 7b). Therefore, in a qualitative analysis, the small
differences in theΔE values and in the population of these
states suggest that these two models should present
similar χ(T) curves around 7.5 K, as is the case. This
explains why one cannot discriminate between 2D or 3D
magnetic topologies solely by examining the shape of the
magnetic susceptibility curve.
As already suggested in the experimental study,13c one

can examine other magnetic properties, as heat capacity
Cp(T) or magnetizationM(H) curve, in order to properly
determine the magnetic dimensionality of (5MAP)2CuBr4.
Figure 8 shows theCp(T) andM(H) curves computedusing
the 2D2x8s and 3D16s models. The two Cp(T) curves

(Figure 8a) are slightly different: the curve computed using
the 3D16s model shows a small shoulder not observed in
that computed with the 2D2x8s model (no comparison is
possible with the experimental curve because it has not yet
beenmeasured for (5MAP)2CuBr4).However, such a result
agrees with other theoretical works.12 The M(H) curves
computed using the 3D16s model (Figure 8b) is also
different than that obtained with the 2D2x8s model:
while the 2D2x8s curve presents shoulders in some fields
(∼10 and 14 T) not observed experimentally, the 3D16s
data reproduces the linear increase found in the experi-
mental curve in all regions except at very low magnetic
fields, where the computedM becomes zero at values below
∼2 T. An analysis of such behavior indicates that this is an
unphysical trend, which is the consequence of the necessity
for reasonably small finite magnetic model spaces in our
calculations.

Conclusions

A first-principles bottom-up study done on the room-
temperature crystal structure of (5MAP)2CuBr4 shows
that its magnetic topology is 3D even at room temperature.
This 3D magnetic topology results from through-space
Cu-Br 3 3 3Br-Cu pathways that result from the overlap of
CuBr4

2- orbitals. Four non-negligible antiferromagnetic J(di)
magnetic interactions are found, with values -1.47, -3.35,
-0.08, and-0.07 cm-1. The largest J(di) interaction links the
radicalswithin the ab-plane, forming a squaremagnetic lattice
topology. Adjacent ab-planes are connected along the c-axis
by the remaining three magnetic interactions. These are all
through-space interactions, found to be significant even when
the shortest Br 3 3 3Br distances are about 5 Å.
The magnetic susceptibility curve, χ(T), computed using a

three-dimensional model space, 3D16s, properly reproduces
the shape of the experimental χ(T) curve, with a small
deviation in the region of the curvemaximum. This deviation
can be ascribed to the use of a room-temperature crystal
structure, in agreement with previous results on other mole-
cule-based crystals. However, the χ(T) curve computed using
a hypothetical pure 2Dmagnetic topologymodel obtainedby
deleting all inter ab-planes interactions also reproduces well
the experimental χ(T) curve. Consequently, it can be safely

Figure 7. (a) Energy spectraΔE as function of theS spinmultiplicity for
all states of the 3D16s and 2D2x8s magnetic models; (b) Boltzmann
population at 7.5 K (maximum of χ(T) curves) of the lowest energy states
of the same models.

Figure 8. Comparison between the heat capacity (a) and magnetization (b) curves computed on the room-temperature (5MAP)2CuBr4 crystal using the
three-dimensional 3D16s model (red rhombus) and a hypothetical two-dimensional 2D2x8s magnetic model (blue squares). The black dots in (b) are
representative data points collected at 1.3 K (ref 13c).
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concluded that one cannot assign the dimensionality of the
magnetic topology in (5MAP)2CuBr4 by looking only at the
shape of the χ(T) curves.
A comparison of the computed and experimental magne-

tization curves, M(H), indicates that the dimensionality can
be assignedwhen examining the shape of these curves, as only
the curves for 3D model spaces reproduce the main features
of the experimental M(H) curve (except in the region of
magnetic fields close to zero, due to the use of finite model
spaces). No conclusions can be drawn on the heat capacity
curve, Cp(T), as there is no experimental data for this
property on (5MAP)2CuBr4. However, computed Cp(T )
using the 3D16s model space shows a small shoulder at low
temperatures (T ∼ 1 K), which has been theoretically pre-
dicted to exist only on 3D models.
Overall, these results indicate that in order tomake aproper

assignment of the dimensionality of the magnetic topology in
(5MAP)2CuBr4 (and, therefore, a correct interpretation of the
mechanism of the magnetic interactions in this system) one
cannot solely resort to magnetic susceptibility curves but
needs further support. This support is 2-fold: experimental
and theoretical. It can be obtained from other macroscopic
magnetic observables, in this case, the M(H) curve, or from
more sensitive experiments (such as muon spin rotation,
μ-SR, studies). It can also be obtained by doing a first-
principles bottom-up theoretical study of the crystal.
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Supporting Information Available: Complete ref 21. Figure S1:
Geometry of the seven unique radical-pairs present in the
(5MAP)2CuBr4 crystal (the Cu 3 3 3Cu distance is indicated in
each pair). Also the anion2-cation4 model for d1, d2, d5, and d6
non-negligible radical pairs is given. The position of the four
5MAPþ counterions has been decided in terms of close contacts
and symmetry. Figure S2. Three-dimensional magnetic models
tested in our study: (a) 3D8s, (b) 3D12s_3x2x2, (c) 3D14s, (d)
3D16sZiZa, (e) 3D16s_4x2x2, (f) 3D12s_2x2x3. Figure S3. (a)
Magnetic susceptibility data computed using three-dimensional
magnetic models of Figure S2 (3D8s, 3D12s_3x2x2, 3D14s,
3D16sZiZa). (b) Magnetic susceptibility data computed using
the same three-dimensional models and the hypothetical 2D
models obtained from them by deleting J(d1), J(d5), and J(d6)
inter ab-plane interactions. This material is available free of
charge via the Internet at http://pubs.acs.org.


